Home About us Editorial board Search Ahead of print Current issue Archives Submit article Instructions Subscribe Contacts Login 
Visit old site
Home Print this page Email this page Small font size Default font size Increase font size
Users Online: 53

 Table of Contents  
Year : 2015  |  Volume : 7  |  Issue : 2  |  Page : 41-46

Cardiovascular effects of copper deficiency on activity of superoxide dismutase in diabetic nephropathy

1 Department of Chemistry and Clinical Biochemistry, College of Medicine, Al-Nahrain University, Baghdad, Iraq
2 School of Community Health, Charles Sturt University, New South Wales, Australia
3 School of Medicine, University of Tasmania, Hobart, Australia

Date of Web Publication25-Feb-2015

Correspondence Address:
Hayder A Al-Aubaidy
School of Medicine, University of Tasmania, Private Bag 34, Hobart, Tasmania
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/1947-2714.152077

Rights and Permissions

Background: Copper (Cu) is essential both for its role in antioxidant enzymes, like Cu/zinc (Zn) superoxide dismutase (SOD) and ceruloplasmin, as well as its role in lysyl oxidase, essential for the strength and integrity of the heart and blood vessels. With such a central role in cardiovascular health, Cu has been generally overlooked in the debate over improving our cardiovascular health. Cu deficiency has produced many of the same abnormalities present in cardiovascular disease. It seems almost certain that Cu plays a large role in the development of this killer disease, not because of its excess in the diet, but rather its deficiency. Aim: This study was undertaken to investigate the cardiovascular effects of Cu deficiency on the activity of SOD in patients with type 2 diabetes mellitus (T2DM) with and without diabetic nephropathy. Materials and Methods: Fifty-five patients with T2DM were recruited in this study which were divided into two subgroups based on the presence of microalbuminuria, the first group (microal buminuric group, n = 31) had a microalbuminuria between 30 and 299 μg/mg. The second group (normoal buminuric group, n = 29) had an albumin level less than 30 μg/mg. The two diabetic groups were compared to the control group (n = 37). Results: The results of our study showed a significant reduction in the levels of SOD enzyme associated with an increased urinary Cu excretion in microalbuminuric group compared to the control group at P < 0.05. Conclusions: The current study illustrates that the regulation of the blood concentrations of Cu may be a potential therapeutic target for prevention and treatment of diabetic nephropathy.

Keywords: Copper, Microalbuminuria, Superoxide dismutase, Type 2 diabetes mellitus

How to cite this article:
Al-Bayati MA, Jamil DA, Al-Aubaidy HA. Cardiovascular effects of copper deficiency on activity of superoxide dismutase in diabetic nephropathy. North Am J Med Sci 2015;7:41-6

How to cite this URL:
Al-Bayati MA, Jamil DA, Al-Aubaidy HA. Cardiovascular effects of copper deficiency on activity of superoxide dismutase in diabetic nephropathy. North Am J Med Sci [serial online] 2015 [cited 2023 Mar 22];7:41-6. Available from: https://www.najms.org/text.asp?2015/7/2/41/152077

  Introduction Top

The ratio of copper (Cu) to other dietary components (e.g., zinc (Zn), iron, sulfate, and molybdenum) may be as important as the actual Cu levels in the diet. [1] Cu/Zn ratios may be important to the adequate metabolism of cholesterol, with low ratios resulting in hypercholesterolemia. [1],[2],[3] Previous studies have focused on acute severe Cu deficiency, which is relatively rare in humans and animals on typical varied diets. Marginal chronic deficiency, however, is much more common. The determination of Cu needs and marginal deficiency is complicated by the fact that while Cu deficiency does not necessarily lower the level of Cu-dependent enzymes, it does significantly lowers their activity. [3]

Superoxide dismutase (SOD) functions as an antioxidant by catalyzing the conversion of superoxide radicals (free radicals or reactive oxygen species (ROS)) to hydrogenperoxide, which can subsequently be reduced to water by other antioxidant enzymes. [4],[5] Superoxide radicals may react with other ROS such as nitricoxide to form highly toxic species like peroxynitrite, in addition to its direct toxic effects. [4],[5] Peroxy nitrite reacts with the tyrosine residues in proteins resulting with the nitrotyrosine production in plasma proteins, which is considered as an in direct evidence of peroxynitrite production and increased oxidative stress. [6] Although nitrotyrosine was not detectable in the plasma of the healthy controls, nitrotyrosine was found in the plasma of all type 2 diabetic patients (type 2 diabetes mellitus (T2DM)) examined. Previous studies correlated plasma nitrotyrosine values with plasma glucose concentrations and found a significant positive correlation. [7],[8] Furthermore, exposure of endothelial cells to high glucose level leads to an augmented production of superoxide anion, which may quench nitric oxide level resulting in impaired endothelial functions, vasodilation, and delayed cell replication. [9] Alternatively, superoxide can be dismutated to a much more reactive hydrogen peroxide, which through the Fenton reaction can then lead to a highly toxic hydroxyl radical formation. [10],[11]

Two forms of SOD contain Cu: i) Cu/Zn-SOD is found within most cells of the body, including red blood cells, and ii) extracellular (EC)-SOD is a Cu-containing enzyme found in high levels in the lungs and low levels in blood plasma. [5],[12],[13] Almost all of the Cu in our bodies is bound either to transport proteins (ceruloplasmin and Cu-albumin), storage proteins (metallothioneins), or Cu containing enzymes. [14],[15] Intracellular metallothionine normally stores little Cu providing protection from the harmful effects of free Cu. [14],[15] Ceruloplasmin may function as an antioxidant in two different ways: By binding to Cu, ceruloplasmin prevents free Cu ions from catalyzing oxidative damage. The other way is through the oxidation of ferrous iron by ceruplasmin, facilitating iron load into its transport protein, transferrin, and preventing free ferrous ions from participating in harmful free radical generating reactions. [16]

Major reason for the decreased SOD activity is the glycosylation of Cu/Zn-SOD which has been shown to lead to enzyme inactivation both in vivo and in vitro. [17] Also Cu/Zn-SOD cleavage and release of Cu ++in vitro resulted intransition metalcatalyzed ROS formation. [17],[18] Erythrocyte Cu/Zn-SOD activity correlated inversely with indices of glycemic control in DM patients. [17],[18] However, red cell Cu/Zn-SOD activity has also been found to be decreased in DM patients. [17],[18] Glycation may decrease cell-associated EC-SOD, which could predispose to oxidative damage. Earlier reports found decreased red cell Cu/Zn-SOD activity in DM patients with retinopathy compared to DM patients without microvascular complications and nondiabetic control subjects. [19]

  Materials and Methods Top

Study protocol and participants

This study was approved by the Scientific and Ethics Committee of the College of Medicine, Al-Nahrain University. Informed consent was obtained from all participants. Ninety-two participants were recruited for this study (55 participants with T2DM and 37 normal control subjects). T2DM was diagnosed as per the World Health Organization (WHO) definition. [20] Type 2 diabetic patients (n = 55) were divided according to the urine protein (albumin) excretion measured in μg/mg creatinine [Table 1] into:

  1. Patients with albumin-creatinine ratio that is equal to 30-299 μg/mg were considered to have microal buminuria (n = 31).
  2. Patients with albuminexcretion less than 30 μg/mg creatinine were considered normoal buminuric (n = 24).
Table 1: Demographic and clinical data of the participants included in the study

Click here to view

All patients were recruited from the outpatient diabetes clinic at Al-Kadhymia Teaching Hospital. The exclusion criteria included: Patients with any recent medical illness; impaired thyroid or renal function; diagnosis of renal disease; and treatment with estrogen, glucocorticoids, or other drugs except oral hypoglycemic and/or beta blocker antihypertensive drugs. All patients included in the study were nonsmokers; none were taking antioxidant supplements or drugs with known antioxidant activity. The mean duration of diabetes was (7.96 ± 3.45 years).

The control group consisted of 37 healthy, age- and gender-matched subjects (48.92 ± 8.9 years). The control group consisted of participants with no known medical history and with no family history of diabetes or nephropathy.

Blood samples

A total of 10 ml of venous blood samples were collected from each subject in the study after 10-12 h fasting. Two milliliters were collected into ethylene diaminetetraa cetic acid (EDTA) containing tubes for glycated hemoglobin (HbA1c) assay. The remaining 8 ml were centrifuged at 3,000 rpm for 10 min after about 30 min from the time of blood collection. Sera were separated for measurement of serum creatinine, serum lipids and serum SOD. The sera were stored at -80°C. All assays were obtained by running duplicates for the test, control, and the standard.

Urine samples

Random morning urine specimens were obtained from each subject in the study, to quantify albuminuria, creatinine, Cu, and albumin to creatinine ratio. No urine preservatives were used; the samples were stored in appropriate containers and were kept at the refrigerator until the time of measurements.

Parameters of the study

A. Methods applied in urine: A micro method was employed for the determination of urinary protein based upon the coprecipitation of protein and Ponceau S dye by trichloracetic acid (TCA), dissolution of the precipitate in dilute alkali, and spectrophotometric determination of the dye in alkaline solution. [21] Urinary creatinine was estimated by the BioMerieux assay kit based on the method of Bartels et al. [22]

B. Methods applied in blood: Serum creatinine was estimated by the BioMerieux assay kit based on the method of Bartels et al. [22] Cu was measured by flame atomic absorption spectrophotometer. A stock standard concentration of Cu (50 mol/L) was prepared and subsequent dilutions were made to obtain a calibration curve. Urine samples were diluted (1:10) by deionized water and measured directly against an aqueous standard made from certified standard solution. Cu hallow cathode lamps were used at wavelength of 324.75 nm. These solutions were aspirated directly into air-acetylene flame.

Serum lipids were measure using BioMerieux assay kits for total cholesterol (TC), triglycerides (TG), high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C).

Serum SOD was measured using the SOD assay kit-water soluble tetrazolium salt (Dojindo Molecular Technologies, Rockville, MD, USA). [23]

Glycated hemoglobin (HbA1c) samples were by VariantTM HbA1c program, which is intended for the determination of HbA1c in human whole blood using ion-exchange high performance liquid chromatography (HPLC).

Statistical analysis

Data are expressed as mean ± standard deviation of mean. Statistical significance was determined by ANOVA test followed by unpaired Student's t-test and Pearson's correlation (r) to test correlation of regression. P-values equal or lower than 0.05 were considered statistically significant.

  Results Top

All groups were closely age-matched, and the two diabetes groups were well-matched for duration of disease [Table 1].

Microabuminuric diabetic group shows a significant increase in the mean urinary Cu/creatinine ratio when compared with controls (P < 0.05), while normoal buminuric diabetic patients shows an insignificant increase, P > 0.05 in mean urine Cu/creatinine ratio when compared with controls [Table 2].
Table 2: Urinary copper excretion and serum superoxide dismutase enzyme levels in microal buminurics, normoal buminurics, and control subjects

Click here to view

Serum SOD was significantly decreased in the diabetes microal buminuric group compared to the control group (P < 0.05), such a significant correlation was not seen with the diabetes normoal buminuric group [Figure 1] and [Table 2].
Figure 1: Mean values of serum superoxide dismutase enzyme among the three groups of the study

Click here to view

  Discussion Top

Studies showed a reduction in erythrocyte SOD and catalase (CAT) activities in subjects with impaired glucose tolerance (IGT), early hyperglycemia, and type 2 DM patients. [24] However, other studies showed that the activities of these enzymes were within normal range in T2DM patients in poor glycemic control. [25] EC-SOD activity was found to be similar in T1DM patients despite some what higher plasma EC-SOD levels. [26] Red cell Cu/Zn-SOD activity was similar in T1DM and T2DM patients compared to normal subjects, [27],[28],[29] irrespective of microvascular complications. Leukocyte SOD activity was similar between type 2DM patients and healthy control subjects, despite increased lipidperoxidation and decreased ascorbate levels. [30]

While the role of adequate Cu levels in maintaining cardiovascular health is well-established, there are still inconsistent data about the correlation of Cu with persisting hyperglycemia. Some studies showed an elevation of serum Cu, while other studies showed a significant reduction of Cu in diabetes. [31],[32] While this may sound confusing, recent research has helped to explain this paradox. [31],[32],[33],[34]

Many researchers have considered this elevation of serum Cu to play a role in the pathogenesis of cardiovascular disease, although other researchers have strongly disagreed with this hypothesis. An animal study, however, seems to have explained this relationship between Cu levels and cardiovascular disease. This study examined the effects of diet-induced atherosclerosis on the Cu levels and status of numerous tissues. [35] It was found that serum Cu levels increase significantly, while aorta and liver Cu levels decrease significantly, in rats with experimental atherosclerosis. So instead of assuming that these elevated Cu levels contribute to the formation of atherosclerosis, these researchers examined the effects of increasing the dietary Cu levels in these animals. Administration of additional Cu resulted in a further increase in serum Cu, a significant decrease in serum cholesterol, and an increase and normalization in aorta and liver Cu levels. [35] However, instead of increasing the incidence of atherosclerosis, additional Cu significantly decreased the incidence of atherosclerosis in the aorta and coronary arteries. Further, it has been shown that excess dietary cholesterol causes cardiovascular disease by lowering the absorption of Cu, an effect that is preventable by increasing the Cu level in the diet.

The mechanism of the link between microal buminuria and cardiovascular mortality is still unclear. However, increased urinary albumin loss has been postulated to be a marker of a generalized increase in vascular permeability, which might predispose to greater penetration into the arterial wall of atherogenic lipoprotein particles. [36],[37],[38]

Urinary Cu concentrations significantly increased only in microal buminuric patients, similar results were found by [39] , but with macroal buminuric diabetic patients. In diabetic patients with advanced nephropathy, urinary Cu excretion may be due to dissociations from both Cu-albumin and ceruloplasmin-Cu complexes filtered through the damaged glomerulus. Overloading of urinary Cu to damaged renal tubules may play some roles in the progression of nephropathy in patients with advanced nephropathy. [39]

  Conclusion Top

Cellular concentrations of Cu must be maintained somewhere below toxicity but above nutrient deficiency. Therefore, regulation of the blood concentrations of Cu may be a potential therapeutic target for prevention and treatment of diabetic nephropathy. However, there is still a lot to know about the mechanism of Cu homeostasis at the cellular level. If reduction of serum Cu can be shown to have a protective effect against oxidative stress in DM, this may have a direct impact on the use of Cu chelators as a safe therapeutic modality in diabetes.

  References Top

Bellof G, Most E, Pallauf J. Concentration of copper, iron, manganese and zinc in muscle, fat and bone tissue of lambs of the breed German Merino Landsheep in the course of the growing period and different feeding intensities. J Anim Physiol Anim Nutr 2007;91:100-8.  Back to cited text no. 1
Grammer TB, Kleber ME, Silbernagel G, Pilz S, Scharnagl H, Lerchbaum E, et al. Copper, ceruloplasmin, and long-term cardiovascular and total mortality (the Ludwigshafen Risk and Cardiovascular Health Study). Free Radic Res 2014;48:706-15.  Back to cited text no. 2
Roughead ZK, Johnson LK, Hunt JR. Dietary copper primarily affects antioxidant capacity and dietary iron mainly affects iron status in a surface response study of female rats fed varying concentrations of iron, zinc and copper. J Nutr 1999;129:1368-76.  Back to cited text no. 3
Jendryczko A, Tomala J, Janosz P. Effects of two low-dose oral contraceptives on erythrocyte superoxide dismutase, catalase and glutathione peroxidase activities. Zentralbl Gynakol 1993;115:469-72.  Back to cited text no. 4
Kharb S. Activity of extracellular superoxide dismutase in gestational diabetes. Res J Obstet Gynecol 2010;3:1-4.  Back to cited text no. 5
Noiri E, Nakao A, Uchida K, Tsukahara H, Ohno M, Fujita T, et al. Oxidative and nitrosative stress in acute renal ischemia. Am J Physiol Renal Physiol 2001;281:F948-57.  Back to cited text no. 6
Horvath EM, Magenheim R, Kugler E, Vacz G, Szigethy A, Levardi F, et al. Nitrative stress and poly (ADP-ribose) polymerase activation in healthy and gestational diabetic pregnancies. Diabetologia 2009;52:1935-43.  Back to cited text no. 7
Mohammad BI, Hadi NR, Jawad HM, Jamil DA, Al-Aubaidy HA. Improve markers of oxidative stress and coagulation parameters in response to atorvastatin therapy. Br J Pharm Res 2014;4:1242-52.  Back to cited text no. 8
Giugliano D, Ceriello A, Paolisso G. Oxidative stress and diabetic vascular complications. Diabetes Care 1996;19: 257-67.  Back to cited text no. 9
Clerici G, Slavescu C, Fiengo S, Kanninen TT, Romanelli M, Biondi R, et al. Oxidative stress in pathological pregnancies. J Obstet Gynaecol 2012;32:124-7.  Back to cited text no. 10
Wolff SP, Jiang ZY, Hunt JV. Protein glycation and oxidative stress in diabetes mellitus and ageing. Free Radic Biol Med 1991;10:339-52.  Back to cited text no. 11
Ferns GA, Lamb DJ, Taylor A. The possible role of copper ions in atherogenesis: The Blue Janus. Atherosclerosis 1997;133:139-52.  Back to cited text no. 12
Jamil DA, Al-Aubaidy HA, Al-Wasiti EA, Al Bayati M. Evaluating markers of oxidative stress in managing gestational diabetes mellitus: A cross sectional study in Iraq. Br J Med Med Res 2014;4:3870-7.  Back to cited text no. 13
Li X, Cai L, Feng W. Diabetes and metallothionein. Mini Rev Med Chem 2007;7:761-8.  Back to cited text no. 14
Nakazato K, Tomioka S, Nakajima K, Saito H, Kato M, Kodaira T, et al. Determination of the serum metallothionein (MT)1/2 concentration in patients with Wilson's disease and Menkes disease. J Trace Elem Med Biol 2014;28:441-7.  Back to cited text no. 15
Johnson MA, Fischer JG, Kays SE. Is copper an antioxidant nutrient? Crit Rev Food Sci Nutr 1992;32:1-31.  Back to cited text no. 16
Kim JW, Nam SM, Kim YN, Yoo DY, Choi JH, Jung HY, et al. Treadmill exercise ameliorates diabetes-induced increases in lipid peroxidation and decreases in Cu, Zn-superoxide dismutase levels in the hippocampus of Zucker diabetic fatty rats. J Vet Sci 2014 (in print).  Back to cited text no. 17
Kumawat M, Sharma TK, Singh I, Singh N, Ghalaut VS, Vardey SK, et al. Antioxidant enzymes and lipid peroxidation in type 2 diabetes mellitus patients with and without nephropathy. North Am J Med Sci 2013;5:213-9.  Back to cited text no. 18
[PUBMED]  Medknow Journal  
Jennings PE, McLaren M, Scott NA, Saniabadi AR, Belch JJ. The relationship of oxidative stress to thrombotic tendency in type 1 diabetic patients with retinopathy. Diabet Med 1991;8:860-5.  Back to cited text no. 19
World Health Organization. Definition, diagnosis and classification of diabetes mellitus and its complications: Report of a WHO consultation. Part 1: Diagnosis and classification of diabetes mellitus. Geneva: WHO; 1999.  Back to cited text no. 20
Pesce MA, Strande CS. A new micromethod for determination of protein in cerebrospinal fluid and urine. Clin Chem 1973;19:1265-7.  Back to cited text no. 21
Bartels H, Bohmer M, Heierli C. Serum creatinine determination without protein precipitation. Clin Chim Acta 1972;37:193-7.  Back to cited text no. 22
Ukeda H, Maeda S, Ishii T, Sawamura M. Spectrophotometric assay for superoxide dismutase based on tetrazolium salt 3'-1-(phenylamino)-carbonyl-3, 4-tetrazolium]-bis(4-methoxy-6-nitro)benzenesulfonic acid hydrate reduction by xanthine-xanthine oxidase. Anal Biochem 1997;251: 206-9.  Back to cited text no. 23
Vijayalingam S, Parthiban A, Shanmugasundaram KR, Mohan V. Abnormal antioxidant status in impaired glucose tolerance and non-insulin-dependent diabetes mellitus. Diabet Med 1996;13:715-9.  Back to cited text no. 24
Peuchant E, Delmas-Beauvieux MC, Couchouron A, Dubourg L, Thomas MJ, Perromat A, et al. Short-term insulin therapy and normoglycemia. Effects on erythrocyte lipid peroxidation in NIDDM patients. Diabetes Care 1997;20: 202-7.  Back to cited text no. 25
Adachi T, Yamada H, Yamada Y, Morihara N, Yamazaki N, Murakami T, et al. Substitution of glycine for arginine-213 in extracellular-superoxide dismutase impairs affinity for heparin and endothelial cell surface. Biochem J 1996;313 (Pt 1):235-9.  Back to cited text no. 26
Krolak B, Kaminski K. Activity of superoxide dismutase (SOD) and its isoenzyme activities in newborn children and adult women and men. Ginekol Pol 1992;63:404-9.  Back to cited text no. 27
Lang I, Deak G, Muzes G, Pronai L, Feher J. Effect of the natural bioflavonoid antioxidant silymarin on superoxide dismutase (SOD) activity and expression in vitro. Biotechnol Ther 1993;4:263-70.  Back to cited text no. 28
Winterbourn CC, Peskin AV, Parsons-Mair HN. Thiol oxidase activity of copper, zinc superoxide dismutase. J Biol Chem 2002;277:1906-11.  Back to cited text no. 29
Akkus I, Kalak S, Vural H, Caglayan O, Menekse E, Can G, et al. Leukocyte lipid peroxidation, superoxide dismutase, glutathione peroxidase and serum and leukocyte vitamin C levels of patients with type II diabetes mellitus. Clin Chim Acta 1996;244:221-7.  Back to cited text no. 30
Salmonowicz B, Krzystek-Korpacka M, Noczynska A. Trace elements, magnesium, and the efficacy of antioxidant systems in children with type 1 diabetes mellitus and in their siblings. Adv Clin Exp Med 2014;23:259-68.  Back to cited text no. 31
Xu J, Zhou Q, Liu G, Tan Y, Cai L. Analysis of serum and urinal copper and zinc in Chinese northeast population with the prediabetes or diabetes with and without complications. Oxid Med Cell Longev 2013;2013:635214.  Back to cited text no. 32
Basaki M, Saeb M, Nazifi S, Shamsaei HA. Zinc, copper, iron, and chromium concentrations in young patients with type 2 diabetes mellitus. Biol Trace Elem Res 2012;148:161-4.  Back to cited text no. 33
Qazzaz M, Abdul-Ghani R, Metani M, Husein R, Abu-Hijleh AL, Abdul-Ghani AS. The antioxidant activity of copper(II) (3,5-diisopropyl salicylate)4 and its protective effect against streptozotocin-induced diabetes mellitus in rats. Biol Trace Elem Res 2013;154:88-96.  Back to cited text no. 34
Rayssiguier Y, Gueux E, Bussiere L, Mazur A. Copper deficiency increases the susceptibility of lipoproteins and tissues to peroxidation in rats. J Nutr 1993;123:1343-8.  Back to cited text no. 35
Al-Bayati MA, Jamil DA, Al-Aubaidy HA. The association of oxidized high density lipoprtotein and oxidized non-high density lipoprotien with the development of microalbuminuria in diabetic nephropathy. World Journal of Pharmacy and Pharmaceutical Sciences 2014;3:49-59.  Back to cited text no. 36
Popov AV, Ketlinski SA, Tararak EM. Historadioautographic and biochemical studies on the transport of atherogenic lipoproteins into the rabbit aortic wall. Paroi Arterielle 1975;3:61-9.  Back to cited text no. 37
Torzewski M, Suriyaphol P, Paprotka K, Spath L, Ochsenhirt V, Schmitt A, et al. Enzymatic modification of low-density lipoprotein in the arterial wall: A new role for plasmin and matrix metalloproteinases in atherogenesis. Arterioscler Thromb Vasc Biol 2004;24:2130-6.  Back to cited text no. 38
Ito S, Fujita H, Narita T, Yaginuma T, Kawarada Y, Kawagoe M, et al. Urinary copper excretion in type 2 diabetic patients with nephropathy. Nephron 2001;88: 307-12.  Back to cited text no. 39


  [Figure 1]

  [Table 1], [Table 2]

This article has been cited by
1 The contemporaneous epidemic of chronic, copper deficiency
Leslie M. Klevay
Journal of Nutritional Science. 2022; 11
[Pubmed] | [DOI]
2 Copper homeostasis and cuproptosis in health and disease
Liyun Chen, Junxia Min, Fudi Wang
Signal Transduction and Targeted Therapy. 2022; 7(1)
[Pubmed] | [DOI]
3 Exploring the Link Between the Serum/Blood Levels of Heavy Metals (Pb, As, Cd, and Cu) and 2 Novel Biomarkers of Cardiovascular Stress (Growth Differentiation Factor 15 and Soluble Suppression of Tumorigenicity 2) in Copper Smelter Workers
Basma Hussein Mourad, Ghada Hossam El-Sherif
Journal of Occupational & Environmental Medicine. 2022; Publish Ah
[Pubmed] | [DOI]
4 Dietary metal intake and the prevalence of erectile dysfunction in US men: Results from National Health and Nutrition Examination Survey 2001–2004
Rui-Ji Liu, Shu-Ying Li, Zhi-Peng Xu, Jun-Jie Yu, Wei-Pu Mao, Chao Sun, Bin Xu, Ming Chen
Frontiers in Nutrition. 2022; 9
[Pubmed] | [DOI]
5 Potential Role of Copper in Diabetes and Diabetic Kidney Disease
Guido Gembillo, Vincenzo Labbozzetta, Alfio Edoardo Giuffrida, Luigi Peritore, Vincenzo Calabrese, Claudia Spinella, Maria Rita Stancanelli, Eugenia Spallino, Luca Visconti, Domenico Santoro
Metabolites. 2022; 13(1): 17
[Pubmed] | [DOI]
6 Investigation on the Association of Copper and Copper-to-Zinc-Ratio in Hair with Acute Coronary Syndrome Occurrence and Its Risk Factors
Ewelina A. Dziedzic, Agnieszka Tuzimek, Jakub S. Gasior, Justyna Paleczny, Adam Junka, Miroslaw Kwasny, Marek Dabrowski, Piotr Jankowski
Nutrients. 2022; 14(19): 4107
[Pubmed] | [DOI]
7 The role of oxidative stress and haematological parameters in relapsing-remitting multiple sclerosis in Kurdish population
Abdulrahman Aziz Rasoul,Zhikal Omar Khudhur,Majeed Salih Hamad,Younis Sadiq Ismaeal,Shukur Wasman Smail,Mohammed Fatih Rasul,Karzan Abdulmuhsin Mohammad,Abdulrazzaq Bapir,Shwan Ali Omar,Mahdi Khaled Qadir,Mustafa Fahmi Rajab,Abbas Salihi,Muhammad Kaleem,Muhammad Arif Rizwan,Anas Sarwar Qureshi,Zeeshan M. Iqbal,Qudrat ullah
Multiple Sclerosis and Related Disorders. 2021; : 103228
[Pubmed] | [DOI]
8 Resveratrol modulates the blood plasma levels of Cu and Zn, the antioxidant status and the vascular response of thoracic arteries in copper deficient Wistar rats
Michal Majewski,Katarzyna Ognik,Michael Thoene,Aleksandra Rawicka,Jerzy Juskiewicz
Toxicology and Applied Pharmacology. 2020; : 114877
[Pubmed] | [DOI]
9 Selenium, antioxidants, cardiovascular disease, and all-cause mortality: a systematic review and meta-analysis of randomized controlled trials
David J A Jenkins,David Kitts,Edward L Giovannucci,Sandhya Sahye-Pudaruth,Melanie Paquette,Sonia Blanco Mejia,Darshna Patel,Meaghan Kavanagh,Tom Tsirakis,Cyril W C Kendall,Sathish C Pichika,John L Sievenpiper
The American Journal of Clinical Nutrition. 2020;
[Pubmed] | [DOI]
10 Copper environmental toxicology, recent advances, and future outlook: a review
Muzammal Rehman,Lijun Liu,Qin Wang,Muhammad Hamzah Saleem,Saqib Bashir,Sana Ullah,Dingxiang Peng
Environmental Science and Pollution Research. 2019;
[Pubmed] | [DOI]
11 Copper nanoparticles modify the blood plasma antioxidant status and modulate the vascular mechanisms with nitric oxide and prostanoids involved in Wistar rats
Michal Majewski,Katarzyna Ognik,Jerzy Juskiewicz
Pharmacological Reports. 2019;
[Pubmed] | [DOI]
12 Copper deficiency may be a leading cause of ischaemic heart disease
James J DiNicolantonio,Dennis Mangan,James H O’Keefe
Open Heart. 2018; 5(2): e000784
[Pubmed] | [DOI]
13 Role of essential trace elements in tuberculosis infection: A review article
Aliyeh Sargazi,Roghayeh Afsar Gharebagh,Alireza Sargazi,Halimeh Aali,Hamid Owaysee Oskoee,Zahra Sepehri
Indian Journal of Tuberculosis. 2017;
[Pubmed] | [DOI]
14 Trace minerals intake: Risks and benefits for cardiovascular health
Noushin Mohammadifard,Karin H. Humphries,Carolyn Gotay,Guillermo Mena-Sánchez,Jordi Salas-Salvadó,Ahmad Esmaillzadeh,Andrew Ignaszewski,Nizal Sarrafzadegan
Critical Reviews in Food Science and Nutrition. 2017; : 1
[Pubmed] | [DOI]
15 Effect of dietary copper nanoparticles versus one copper (II) salt: Analysis of vasoreactivity in a rat model
Michal Majewski,Katarzyna Ognik,Przemyslaw Zdunczyk,Jerzy Juskiewicz
Pharmacological Reports. 2017; 69(6): 1282
[Pubmed] | [DOI]
16 Screening of Blood Levels of Mercury, Cadmium, and Copper in Pregnant Women in Dakahlia, Egypt: New Attention to an Old Problem
Shimaa M. Motawei,Hossam E. Gouda
Biological Trace Element Research. 2015;
[Pubmed] | [DOI]


Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
Access Statistics
Email Alert *
Add to My List *
* Registration required (free)

  In this article
Materials and Me...
Article Figures
Article Tables

 Article Access Statistics
    PDF Downloaded427    
    Comments [Add]    
    Cited by others 16    

Recommend this journal